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Abstract

Scaling the system size of the interacting boson model-1 (IBM-1) into the realm of hundreds of bosons has many interesting
applications in the field of nuclear structure, most notably quantum phase transitions in nuclei. We introduce ibar, a new software
package for calculating the eigenvalues and eigenvectors of the IBM-1 Hamiltonian, for large numbers of bosons. Energies and
wavefunctions of the nuclear states, as well as transition strengths between them are calculated using these values. Numerical errors
in the recursive calculation of coefficients of fractional parentage are reduced by using an arbitrary precision mathematical library.
This software has been tested for up to 400 bosons, which is 25 times larger than the standard IBM-1 code PHINT.
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1. Introduction

One topic that has recently been of interest in nuclear struc-
ture is the study of quantum phase transitions in nuclei [1–10],
and the interacting boson model-1 with s and d bosons (sd-
IBM-1)[11] is useful framework for studying such behavior.
The sd-IBM-1, which can be treated as a vast truncation of the
nuclear shell model [12–14], is an algebraic model that can be
used to describe collective motion in even-even nuclei. It is pri-
marily successful at low energies, where states are less likely
to be influenced by single-particle excitations. The states are
constructed from s and d-bosons, which correspond to pairs of
valence nucleons coupling to L = 0 and L = 2 respectively
[15]. Higher angular momentum excitations are possible, but
are assumed to only play a role in higher-energy states.

The number of bosons included in an sd-IBM-1 calcuation
is defined by how many valence particles or holes the nucleus
is away from proton and neutron shell closures. The standard
proton and neutron shell closures occur at 2, 8, 20, 28, 50, 82,
and 126 nucleons. Knowing these numbers, it might be dif-
ficult to imagine why a calculation should ever require more
than 22 bosons in total. The answer to this is that large boson
calculations are not intended to generate spectra for compar-
ing to experimental data, but rather to understand the behavior
of certain observables as the system scales up to mesoscopic
sizes. If such behavior is characteristic of a first or second or-
der quantum phase transition, which can only be determined by
looking at how the behavior evolves into an equivalent infinite-
sized system, then the system can be scaled back down to a re-
alistic number of particles to see if any experimentally observed
behavior in nuclei could be characteristic of such a phase tran-
sition.

Email address: casperson1@llnl.gov (R.J. Casperson)

The code PHINT has been used for many years to perform sd-
IBM-1 calculations with up to 16 bosons [16], but it is unable
to calculate systems with a larger size. Other software has been
written to extend calculations to higher numbers of particles
[17], but precision loss in the calculation of angular momen-
tum coupling coefficients limits the number of bosons to 80. In
specific subsets of the IBM-1 Hamiltonian, certain symmetries
can be exploited to allow calculations for several thousands of
bosons [18], but for the general Hamiltonian this is not possible.

The software ibar was recently written to perform precise
sd-IBM-1 calculations with large numbers of particles, and
it has already been used in a number of investigations into
the characteristics of quantum phase transitions in nuclei [19–
25]. It is currently capable of calculating wavefunctions, ener-
gies, and transition matrix elements for systems with up to 400
bosons. In addition, significant progress has been made towards
scaling the software even further, up to 1000 bosons. Scaling up
to such a large number of particles presents numerous computa-
tional challenges, and a few such challenges will be addressed
in later sections of this paper. In Section 2 the sd-IBM-1 will
be briefly introduced. In Sections 3 through 5, details about
the calculation of Hamiltonian matrix elements, and diagonal-
ization of the Hamiltonian will be presented. Section 6 details
some simple tests of the software, and gives some discussion
about energy degeneracy breaking.

2. The interacting boson model

2.1. Operators

States and operators in the sd-IBM-1 are constructed from s
and d-boson creation and annihilation operators. The s-bosons
have angular momentum L = 0, and have one magnetic sub-
state. The d-bosons have L = 2, so they have five magnetic
substates. The model constructed from these particles therefore
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has six dimensions, and the algebraic group that describes them
is U(6). The operators are s†, d†µ, s, and dµ, where µ = −2 . . . 2,
and they satisfy the Bose commutation relations. In order to cal-
culate matrix elements in the sd-IBM-1, the operators should be
spherical tensors, so the annihilation operators need to be mod-
ified in the following way [11]:

s̃ = s d̃µ = (−1)µd−µ (1)

Tensor products of these spherical tensors can be used to con-
struct a Hamiltonian for the model. The number of bosons in
the model space is defined by the total number of pairs of va-
lence particles and holes in the nucleus, and that number of
bosons is conserved by the Hamiltonian. Although the rela-
tive numbers of s and d-bosons can change, the total number
remains the same. Another common restriction on the Hamil-
tonian is that it contains only one and two-body terms. Higher
order terms are possible, but typically are not necessary, and as
such, are removed from the Hamiltonian. One last restriction
is that terms in the Hamiltonian couple to a total angular mo-
mentum of 0, so that angular momentum is conserved, and the
Hamiltonian can be written in block diagonal form with respect
to L.

2.2. Phase transitional Hamiltonian
Calculations performed in the sd-IBM-1 to probe the charac-

teristics of quantum phase transitions in nuclei typically use a
Hamiltonian that can be varied between spherical and deformed
by adjusting an order parameter. As previously mentioned, the
sd-IBM-1 is described by the U(6) group algebra. The sub-
groups of particular interest, U(5), O(6), and SU(3), are called
dynamical symmetries, and are physically relevant to the dis-
cussion of quantum phase transitions. The following is a sim-
ple Hamiltonian that can be used to describe a form of all three
dynamical symmetries [26, 27]:

ĤECQF = c
(
(1 − ζ)n̂d − ζ

4N
Q̂χ · Q̂χ

)
(2)

where c is a scale factor, n̂d = d† · d̃ is the d-boson number op-
erator, and Q̂χ = [s†d̃](2) + [d† s̃](2) +χ[d†d̃](2) is the quadrupole
operator. The Hamiltonian is labelled ECQF [26], as it refers to
the extended consistent-Q formalism, which means that the E2
transition operator is defined in terms of the same quadrupole
operator:

T̂ (E2) = eBQ̂χ (3)

where eB refers to the effective boson charge. In the Hamilto-
nian, ζ can take on values from 0 to 1, and χ can have values
from ±

√
7

2 to 0. The factor of 4N in front of the quadrupole
term causes the transition from vibrational to rotational struc-
ture to occur at approximately ζ = 1

2 . In terms of the geometric
shape transition, the parameter ζ transitions the Hamiltonian
from spherical (ζ = 0) to deformed (ζ = 1), and χ transitions
the Hamiltonian from gamma-soft (χ = 0) to rigid (χ = ±

√
7

2 ).
To identify the critical point of first and second order phase

transitions, several numerical derivatives of the observables are

needed, which requires the coefficients and overall calcula-
tions to be performed in high-precision and with minimal pre-
cision loss. In some cases, the parameter space in which dra-
matic changes are occuring cannot even be described in single-
precision. In all phases of the design and creation of ibar,
precision was carefully kept in mind.

2.3. Basis states

The matrix elements of the Hamiltonian are calculated in the
U(5) basis, which is the most natural form for expanding in
terms of reduced matrix elements of the d† operator. The U(5)
basis states can be enumerated using the quantum numbers of
the following group chain:

U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) ⊃ O(2) (4)

U(6) is characterized by the total boson quantum number N,
U(5) by the number of d-bosons in a state nd, O(5) by the se-
niority v, O(3) by the angular momentum L, and O(2) by the
magnetic substate quantum number mL. The seniority quantum
number v can also be represented by nβ, which is the number
of pairs of d-bosons, where the pairs couple to angular momen-
tum 0. O(5) is not fully reducible with respect to O(3), so an
additional quantum number is needed to fully characterize the
chain, and this quantum number will be n∆. It refers to the
number of d-boson triplets, where the triplets couple to angular
momentum 0, but it could be defined in many other ways.

When constructing the set of basis states to be used for com-
puting matrix elements of an sd-IBM-1 Hamiltonian, it is con-
venient to examine a single angular momentum L at a time. The
number of d-bosons, nd can take on all integer values from 0 to
N. The seniority quantum number v represents the seniority of
the state and can have the following values: [28]

v = nd, nd − 2, nd − 4, . . . , 0 if nd is even.

v = nd, nd − 2, nd − 4, . . . , 1 if nd is odd. (5)

Using v and nd, an alternate quantum number nβ is defined:
nβ = 1

2 (nd − v). In order to find the allowed values for the
additional quantum number n∆, the index λ is used, which takes
on values between b L+1

2 c and L. One additional restriction on λ
is that L = 2λ− 1 is not allowed [29]. Using the allowed values
of λ, n∆ is defined by the following.

n∆ =
1
3

(nd − 2nβ − λ) (6)

After calculating the possible values for n∆, two final checks are
made for every state in the basis: n∆ ≥ 0 and nd = 2nβ +3n∆ +λ
[11].

3. Calculating matrix elements of the Hamiltonian

3.1. Wigner-Eckart theorem

Before getting into the details of calculating matrix elements
of the Hamiltonian, it is important to remark on the calculation
of matrix elements of tensor products in general. All operators
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in the sd-IBM-1 are constructed from s and d-boson operators.
One of the benefits of these operators being spherical tensors
is that the Wigner-Eckart theorem can be applied to matrix el-
ements of tensor products of the operators. The Wigner-Eckart
theorem separates matrix elements into two parts: a reduced
matrix element which contains all physical information, and a
3-j symbol which contains the geometric information.

〈ndnβn∆Lm|T (k)
κ |n′dn′βn

′
∆L′m′〉 = (−1)L−M

×
(

L k L′

−m κ m′

)
〈ndnβn∆L‖T (k)

κ ‖n′dn′βn
′
∆L′〉 (7)

The tensor products of boson operators that make up the Hamil-
tonian can then be decoupled in to sums of reduced matrix ele-
ments of the operators that the tensor product was constructed
from. In the sd-IBM-1, all terms in the Hamiltonian couple to
angular momentum 0, which is why there are no cross terms
between states of different L. This makes both k and the pro-
jection quantum number κ equal to 0, and Eq. 7 reduces to the
following:

〈ndnβn∆Lm|T (0)
0 |n′dn′βn

′
∆Lm〉 =

1√
2L + 1

× 〈ndnβn∆L‖T (0)
0 ‖n′dn′βn

′
∆L〉 (8)

3.2. Matrix elements of a general sd-IBM-1 Hamiltonian
One form of the sd-IBM-1 Hamiltonian which is often re-

ferred to as the ECQF Hamiltonian was given in Eq. 2. That
Hamiltonian was constructed specifically to transition between
vibrational and rotational structure at approximately ζ = 1

2 , but
the following is a more general form that includes additional
multipole terms:

Ĥ = e0 + εn̂d +κQ̂χ · Q̂χ +a1L̂ · L̂+a3T̂ (3) · T̂ (3) +a4T̂ (4) · T̂ (4) (9)

where κ is sometimes referred to as a2. The operators in this
Hamiltonian are defined in terms of s and d-boson creation and
annihilation operators:

n̂d = d† · d̃
Q̂χ · Q̂χ =

(
[s†d̃](2) + [d† s̃](2) + χ[d†d̃](2)

)

·
(
[s†d̃](2) + [d† s̃](2) + χ[d†d̃](2)

)

L̂ · L̂ = 10[d†d̃](1) · [d†d̃](1)

T̂ (3) · T̂ (3) = [d†d̃](3) · [d†d̃](3)

T̂ (4) · T̂ (4) = [d†d̃](4) · [d†d̃](4) (10)

The alternate parameter ζ and the scale factor c from Eq. 2 can
be reintroduced into the Hamiltonian:

ε = c(1 − ζ) κ = − cζ
4N

(11)

The scalar products in the Hamiltonian can be represented as
tensor products using the following equation: [29]

U(K) · V (K) = (−1)K
√

2K + 1(U(K) × V (K))(0) (12)

It is important to note that the d-boson creation and annihilation
operators have angular momentum 2. A tensor product of two
d† or d̃ operators can couple up to angular momentum 4, and a
scalar product implies a coupling to 0 angular momentum. The
d-boson number operator can be rewritten as

nd = d† · d̃ =
√

5[d†d̃](0). (13)

The s-boson operators have angular momentum 0, so a tensor
product with two s̃ or s† operators will only couple to 0, and
can be represented as a scalar product.

s† · s̃ = [s† s̃](0) (14)

A tensor product of an s-boson operator s̃ or s† with a d-boson
operator d̃ or d† must couple to angular momentum 2, and there
can be no scalar product between the two. The Hamiltonian
shown in Eq. 9 can be converted into normal order form, which
is more convenient for the eventual evaluation of Hamiltonian
matrix elements. Normal ordering simply means that all cre-
ation operators are on the left side in the tensor product, and
all annihilation operators are on the right [30]. The following
formula for recoupling angular momentum can be used to do
this:

[d†d̃](k)·[d†d̃](k) =
2k + 1√

5
[d†d̃](0) + (2k + 1)

×
∑

L=0,2,4

{
2 2 k
2 2 L

}
[d†d†](L) · [d̃d̃](L) (15)

The normal order Hamiltonian can be written as

Ĥ = c0 + c1[s† s̃](0) + c2
√

5[d†d̃](0) + c3[d†d†](0) · [d̃d̃](0)

+ c4[d†d†](2) · [d̃d̃](2) + c5[d†d†](4) · [d̃d̃](4)

+ c6

(
[d†d†](2) · [d̃ s̃](2) + [d†s†](2) · [d̃d̃](2)

)

+ c7
√

5
(
[d†d†](0) · [s̃s̃](0) + [s†s†](0) · [d̃d̃](0)

)

+ c8[d†s†](2) · [d̃ s̃](2) + c9[s†s†](0) · [s̃s̃](0). (16)

Once the Hamiltonian in Eq. 9 is converted to normal order
form, the coefficients of the Hamiltonian will be

c0 = e0

c1 = 5a2

c2 = ε + 6a1 + (1 + χ2)a2 +
7
5

a3 +
9
5

a4

c3 = −6a1 + χ2a2 − 7
5

a3 +
9
5

a4

c4 = −3a1 − 3
14
χ2a2 +

4
5

a3 +
18
35

a4

c5 = 4a1 +
2
7
χ2a2 +

1
10

a3 +
1

70
a4

c6 = 2χa2

c7 = a2

c8 = 2a2

c9 = 0. (17)
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This is the Hamiltonian form used in calculations, as the U(5)
basis states can be applied to calculate the matrix elements of
this Hamiltonian [29].

〈nsndnβn∆| [s†s](0) |nsndnβn∆〉 = ns

〈nsndnβn∆|
√

5[d†d̃](0) |nsndnβn∆〉 = nd

〈nsndnβn∆| 5[d†d†](0) · [d̃d̃](0) |nsndnβn∆〉 =

nd(nd + 3) − v(v + 3)

〈(ns + 2)(nd − 2)(nβ − 1)n∆|
√

5[d̃d̃](0) · [s†s†](0) |nsndnβn∆〉 =
√

nd(nd + 3) − v(v + 3)
√

ns + 1
√

ns + 2

〈nsndnβn∆|
√

5[d†d̃](0) · [s†s](0) |nsndnβn∆〉 = ndns

〈nsndnβn∆| [s†s†](0) · [ss](0) |nsndnβn∆〉 = ns(ns − 1) (18)

The matrix elements of the three Hamiltonian terms associated
with the parameters c3, c4, and c5 can be found by relating those
terms to the following Hamiltonian, written in terms of Casimir
operators:

Ĥ = E0 + ε′Ĉ1(U(5)) + α′
(

1
2

Ĉ2(U(5)) − 5
2

Ĉ1(U(5))
)

+ β′
(
−1

2
Ĉ2(O(5)) + Ĉ2(U(5)) − Ĉ1(U(5))

)

+ γ′
(

1
2

Ĉ2(O(3)) − 6Ĉ1(U(5))
)

(19)

The eigenvalues of this Hamiltonian are

E0 + ε′nd + α′
1
2

nd(nd − 1) + β′ (nd(nd + 3) − v(v + 3))

+ γ′(L(L + 1) − 6nd). (20)

The parameters α′, β′, and γ′ are related to the parameters c3,
c4, and c5 by the following transformation [11]:

α′ =
4
7

c4 +
3
7

c5

β′ =
1
5

c3 − 2
7

c4 +
3
35

c5

γ′ = −1
7

c4 +
1
7

c5 (21)

By transforming the three [d†d†](k) · [d̃d̃](k) terms of the normal
order Hamiltonian into Casimir form, the matrix elements of
the Casimir terms can be used in place of the matrix elements
of those three normal order terms.

The remaining matrix element of the normal order Hamilto-
nian is 〈nsndnβn∆L‖[d†s†](2) · [d̃d̃](2)‖n′sn′dn′βn

′
∆

L〉, which is cal-
culated by fully decoupling the reduced matrix element. The
first step is decoupling the scalar product [29]:

〈ndnβn∆L‖T (k) · U(k)‖n′dn′βn
′
∆L〉 =

1√
2L + 1

∑

n′′d ,n
′′
β ,n
′′
∆
,L′′

(−1)L′′−L

× 〈ndnβn∆L‖T (k)‖n′′d n′′β n′′∆L′′〉〈n′′d n′′β n′′∆ L′′‖U(k)‖n′dn′βn
′
∆L〉
(22)

where T (k) and U(k) are generic tensor operators that couple to
angular momentum k. The next step is to decouple the remain-
ing [d̃d̃](2) reduced matrix element:

〈ndnβn∆L‖
(
T (k1) × U(k2)

)(k) ‖n′dn′βn
′
∆L′〉 = (−1)(L+L′+k)

√
2k + 1

×
∑

n′′d ,n
′′
β ,n
′′
∆
,L′′
〈ndnβn∆L‖T (k1)‖n′′d n′′β n′′∆L′′〉

× 〈n′′d n′′β n′′∆L′′‖U(k2)‖n′dn′βn
′
∆L′〉

{
k1 k2 k
L′ L L′′

}
(23)

At this point, the reduced matrix element 〈nsndnβn∆L‖[d†s†](2) ·
[d̃d̃](2)‖n′sn′dn′βn

′
∆

L〉 has been decoupled into a sum of products
of reduced matrix elements of the individual boson operators,
and 6-j symbols. The reduced matrix elements of the boson op-
erators can be related to the coefficients of fractional parentage
of identical bosons.

4. Reduced Matrix Elements

The reduced matrix element 〈nsndnβn∆L‖d†‖n′sn′dn′βn
′
∆

L′〉 is
found using a recursion formula. An efficient algorithm that
uses isoscalar factors for calculating these coefficients is partic-
ularly well suited for identical boson systems with well-defined
seniority [31, 32]. The procedure begins by first calculating the
multiplicity of states for a given angular momentum L and se-
niority v. These can be found by solving for the coefficients of
Gaussian polynomials [33].

4.1. Multiplicity of States

The first step in calculating the multiplicity of states for a
given angular momentum L and seniority v is to solve for the
coefficients pm of Gaussian polynomials [33]. The allowed val-
ues of m range from 1 to nl, where n is the number of bosons,
and l is the angular momentum of each boson.

pm =

min(r,p−r)∑

s=1
s | m

s −
p∑

s=max(r,p−r)+1
s | m

s (24)

where p = 2l + 1, r = n, and s | m means that only terms where
s is divisible by m are included. Next, the coefficients cm are
calculated recursively using pm.

cm =
1
m

m−1∑

s=0

pm−scs (25)

where c0 = 1. The multiplicity of states for n bosons and an-
gular momentum L is c(nl−L) − c(nl−L−1). The orthogonalization
procedure used during the calculation of reduced matrix ele-
ments requires the multiplicity of states for a seniority v and
angular momentum L, which is calculated by c(vl−L)−c(vl−L−1)−
c((v−2)l−L) + c((v−2)l−L−1), assuming v ≥ 2. For v < 2, the mul-
tiplicity is simply c(vl−L) − c(vl−L−1). For a d-boson system, l
should be set to 2.

4



4.2. Isoscalar factors
Isoscalar factors (ISFs) are closely related to the required re-

duced matrix elements of the single d-boson creation operator,
and can be solved for using the following recursive formula
[31, 32]:
〈

(1) (v − 1) (v)
l α1L1 (α′1L′1)L

〉
=

P(α′1 L′1 α1 L1 L)√
vP(α′1 L′1 α

′
1 L′1 L)

(26)

where P(α′1 L′1 α1 L1 L) is defined by

P(α′1 L′1 α1 L1 L) = δα′1,α1δL′1,L1 + (−1)L+L′1 (v − 1)

×
√

(2L′1 + 1)(2L1 + 1)
∑

α2,L2

({
l L2 L′1
l L L1

}

− 2δL2,L

(2L + 1)(N − 4 + 2v)

) 〈
(1) (v − 2) (v − 1)
l α2L2 α1L1

〉

×
〈

(1) (v − 2) (v − 1)
l α2L2 α′1L′1

〉
(27)

assuming the following initial values:
〈

(1) (1) (2)
l l L

〉
= 1 (L = 0, 2, 4, . . . , 2l)

This set of coefficients will be overcomplete, so Gram-Schmidt
orthogonalization is used to calculate the orthogonal ISFs. The
α = 0 set of coefficients for a given L and v is accepted without
orthogonalization. For the α > 0 sets of coefficients, all previ-
ous sets of coefficients with the same L and v must be projected
out. If only zeros are left after projecting out sets of coefficients,
then the new set was not unique, and should be ignored. If non-
zero values are left, then a new set of ISFs has been found, and
the whole set should be normalized [31, 32].

This procedure uses the multiplicity of states to identify
when all sets of ISFs have been calculated. The relationship
between reduced matrix elements of the d-boson creation oper-
ator and ISFs is the following:

〈vvαL||d†||(v− 1)(v− 1)α′L′〉 =
√

v
〈

(1) (v − 1) (v)
2 α′L′ αL

〉
(28)

4.3. Arbitrary precision
When using standard double-precision floating point arith-

metic for calculating these reduced matrix elements, numerical
errors begin to dominate in the coefficients beyond 50 bosons,
due to the procedure being recursive. At each recursion, the
ISFs will have fractionally less precision than the previous re-
cursion, and eventually, not enough precision will be left to
orthogonalize the set. Long before that point, the coefficients
cease to be useful. For the preparation of reduced matrix ele-
ments for the program ibar, an arbitrary precision arithmetic
library called GMP was used to perform arithmetic to a user-
defined precision [34].

During the process of calculating sets of reduced matrix ele-
ments, it became apparent that approximately one digit of dec-
imal precision is lost for every three particles added to the sys-
tem. This value was determined by taking the largest remainder

from orthogonalization in each iteration. With the expectation
of calculating up to 1000 bosons, 400 decimal digits of preci-
sion were used. Near 400 bosons, several computational bottle-
necks became apparent: storing a high precision set of ISFs for
a single seniority uses an enormous amount of RAM, loading
the full set of ISFs in double-precision for 400 bosons requires
more than 500 MB of RAM, and the calculation of ISFs can
take weeks on a modern desktop computer.

To address the RAM concern for storing the 400-digit ISFs,
the relevant ISFs from the previous seniority are actively loaded
and released based on which new coefficients require them. Al-
though it is natural to calculate a single seniority at a time, re-
structuring the double-precision coefficient files such that they
are ordered by angular momentum L rather than seniority v
significantly reduces the amount of memory required to store
them. This file format is functional in ibar due to the block
diagonal nature of the Hamiltonian, and the fact that the Hamil-
tonian matrix elements do not require ISFs with significantly
different angular momentum than the current L.

Beyond the precision loss from using a recursive formula, the
calculation of 6-j symbols, which are essential ingredients in
angular momentum coupling, can result in significant precision
loss. They can be calculated in the following way [29]:
{

J1 J2 J3
j1 j2 j3

}
= ∆(J1J2J3)∆(J1 j2 j3)∆( j1J2 j3)

× ∆( j1 j2J3)
∑

t

(−1)t(t + 1)!
f (t)

(29)

where ∆( j1 j2 j3) are the triangle coefficients:

∆( j1 j2 j3) =

√
( j1 + j2 − j3)!( j1 − j2 + j3)!(− j1 + j2 + j3)!

( j1 + j2 + j3 + 1)!

(30)

The factor f (t) in the denominator of Eq. 29 is a large product
of factorials:

f (t) = (t − J1 − J2 − J3)!(t − J1 − j2 − j3)!(t − j1 − J2 − j3)!
× (t − j1 − j2 − J3)!( j1 + j2 + J1 + J2 − t)!
× ( j2 + j3 + J2 + J3 − t)!( j1 + j3 + J1 + J3 − t)! (31)

where t takes on all integer values where the factorials have
non-negative arguments. Double-precision floating point num-
bers can have exponents that range from approximately 10−308

to 10308. A system with 400 d-bosons can couple to angular
momentum 800, and 800! has about 1977 decimal digits, so be-
yond precision loss from alternating signs in the t sum, there is
some risk of overflow when multiplying the factorials. This is
resolved by taking the natural logarithm of the factorials, and
adding those together, instead of multiplying the factorials. As
a simple example of this process:

ln
(

a!b!
c!d!

)
= ln(a!) + ln(b!) − ln(c!) − ln(d!) (32)

Also, the calculation of the factorial itself can be rewritten:

ln(a!) = ln


a∏

k=1

k

 =

a∑

k=1

ln(k) (33)
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Once the factorials in the numerator and denominator of the
sum in Eq. 29 have been combined in the logarithm, an ex-
ponential is taken, and the terms are added together. There is
precision loss from the alternating signs, so calculating these
coefficients with high-precision is helpful. Logarithms and ex-
ponentials have not yet been added to GMP at the time of this
writing, so the exponentials were calculated in the form of a
Taylor expansion. The logarithms were calculated as the in-
verse of the exponential using the Newton-Raphson method. To
avoid precision loss from these 6-j symbols in ibar, a lookup
table is calculated in high precision using GMP and is saved as
double-precision in a coefficient file.

The reduced matrix elements calculated by the described al-
gorithm are ordered by a quantum number α rather than n∆.
In order to use these elements in a calculation, the discussion
about allowed values of n∆ in Section 2.3 is used to define the
relationship between n∆ and α: the first allowed n∆ is α = 0, the
second allowed n∆ is α = 1, and so on. Also, rather than storing
every possible reduced matrix element 〈ndvαL‖d†‖n′dv′α′L′〉, it
is adequate to keep only 〈vvαL‖d†‖(v − 1)(v − 1)α′L′〉. The fol-
lowing relation defines the reduced matrix elements in terms of
those where nd = v [29]:

〈ndvαL‖d†‖(nd − 1)(v − 1)α′L′〉 =

√
nd + v + 1

2v + 1
× 〈vvαL‖d†‖(v − 1)(v − 1)α′L′〉 (34)

5. Diagonalization and transition matrix elements

5.1. Matrix diagonalization
With a procedure known for calculating all Hamiltonian ma-

trix elements, the full Hamiltonian can be calculated. The basis
can get quite large for system with a large number of bosons.
For example, the L = 20 Hamiltonian for 400 bosons is a
138007×138007 matrix, and this would require 145.3 GB of
storage to simply save the matrix if it was not compressed. The
Hamiltonian matrix is sparse, so ibar compresses the matrix in
a way that leaves out all zero matrix elements.

The next step is diagonalizing the Hamiltonian, and the li-
brary ARPACK is used to iteratively perform the diagonal-
ization [35]. ARPACK uses an implicitly restarted Lanczos
method for diagonalization, and the library asks ibar to per-
form the matrix multiplication manually. This is fortunate, as
there would be no way for ARPACK to know about the custom
matrix compression used in ibar.

An iterative method like Lanczos is desirable when calcu-
lating only a few eigenvectors, as it is significantly faster than
fully diagonalizing the matrix and calculating all eigenvalues. If
all eigenvalues were desired, then a full diagonalization would
be the best option. The memory required to store the matrix,
and the time required to diagonalize the matrix are the limit-
ing factors for this method, but storing the Hamiltonian as a
band matrix would help significantly. The basis is ordered by
boson number, and the Hamiltonian terms cannot change the
number of d-bosons by more than two, so the matrix elements
should tend towards the diagonal. The option to fully diagonal-
ize a band structured matrix using the library LAPACK may be

added to a future version of ibar, but beyond a certain system
size, storing the eigenvectors will be impractical [36].

5.2. Transition matrix elements
The E2 transition operator in ibar is defined in the following

way:

T̂ (E2) = eB

(
[d† s̃](2) + [s†d̃](2) + χ[d†d̃](2)

)
(35)

In the consistent Q-formalism, χ of this operator is defined to
be the same as the χ that appears in the Hamiltonian. Changing
χ to a different value is an option, however, so this operator has
up to two parameters. The reduced matrix elements of the op-
erator are calculated in a similar way to how the Hamiltonian
reduced matrix elements were calculated. The difference is that
the Hamiltonian matrix elements used basis states, where tran-
sition operators use eigenstates of the Hamiltonian. This results
in the evaluation of a large sum of cross terms between basis
states for each transition matrix element.

Labeling the eigenstates by |Lα〉 allows us to define the R(E2)
and B(E2) in terms of reduced matrix elements of the E2 oper-
ator:

R(E2; Lα → L′α′) = 〈L′α′‖T (E2)‖Lα〉
B(E2; Lα → L′α′) =

1
2L + 1

〈L′α′‖T (E2)‖Lα〉2 (36)

Electric monopole transitions can also be calculated, and the
operator is defined in terms of the d-boson number operator:

T̂ (E0) = β0nd (37)

The nd operator does not change any U(5) quantum numbers,
so the only terms in the evaluation that can be nonzero have the
same basis state on either side of the reduced matrix elements.

6. Results

6.1. Testing the software
In the previous sections, the algorithms used to generate

reduced matrix elements and Hamiltonian matrix elements in
ibar were explained in detail. One useful way to test whether
the software gives the correct result is to select a Hamiltonian
that is part of a dynamical symmetry, and compare the calcula-
tions to analytic expressions for those symmetries. The follow-
ing SU(3) Hamiltonian is useful for testing this sd-IBM-1 soft-
ware, as the Hamiltonian matrix elements require reduced ma-
trix elements from the lookup table, and there are well known
expressions for testing the eigenvalues and transition matrix el-
ements:

Ĥ = κQ̂−
√

7/2 · Q̂−
√

7/2

Q̂−
√

7/2 = [s†d̃](2) + [d† s̃](2) −
√

7
2

[d†d̃](2) (38)

where κ is a negative parameter. One feature of this Hamilto-
nian is that the ratio of energies R4/2 = E(4+

1 )/E(2+
1 ) is equal to

10/3 for all system sizes. A calculation performed in ibar for
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400 bosons with this Hamiltonian deviates from this value by
about 2 × 10−9. When listing energy information about real nu-
clei, the binding energy is typically subtracted from the ground
state, and the ground state is assigned an energy of 0. The
eigenvalues of the L = 0 portion of an SU(3) Hamiltonian like
Eq. 38 begin at an extremely negative value, and the ground
state is then shifted up to 0 energy. For the 400 boson calcu-
lation where κ = − 1

4N , the R4/2 is actually calculated in the
following way:

E(4+
1 )

E(2+
1 )

=
−200.7453125000006 + 200.7500000000011
−200.7485937500001 + 200.7500000000011

(39)

where the -200.75 value is the lowest energy eigenvalue from
the L = 0 calculation, and can be subtracted out, as if it were a
binding energy. This ratio of differences inherently has several
digits of precision loss, which explains why the ibar value de-
viates from the analytical value by 2 × 10−9, rather than some-
thing like 10−14, which one might have expected in a double-
precision calculation with a well-conditioned matrix. Another
observable to test ibar with is a ratio of B(E2)s, such as
B(E2;4+

1→2+
1 )

B(E2;2+
1→0+

1 ) . The analytic expression for this ratio for the Hamil-
tonian given in Eq. 38 is the following:

B(E2; 4+
1 → 2+

1 )
B(E2; 2+

1 → 0+
1 )

=
10(2N − 2)(2N + 5)

7(2N)(2N + 3)
. (40)

Transition strengths like this are calculated from sums of the
eigenvectors and the relevant reduced matrix elements of the
boson operators, and the calculated ratio deviates from the ana-
lytic expression by only 3 × 10−14.

6.2. Degeneracy breaking

The Hamiltonian in Eq. 38 has several energy degeneracies,
and the eigenvectors for these degenerate states have compo-
nents in common. This creates a problem where the states be-
come artificially mixed during diagonalization. If the Hamilto-
nian was written in terms of the SU(3) basis, there would be no
interaction terms between such degenerate states, so the artifi-
cial mixing will yield incorrect results in the eigenvectors. To
get around a problem like this, it is common to break the de-
generacy with an extra term, like in the following Hamiltonian:

Ĥ = εd† · d̃ + κQ̂−
√

7/2 · Q̂−
√

7/2

Q̂−
√

7/2 = [s†d̃](2) + [d† s̃](2) −
√

7
2

[d†d̃](2) (41)

where ε is extremely small. If ε = 0, the 2+
2 and 2+

3 states are
degenerate. Taking the limit as ε → 0, and setting κ = − 1

4N
and N = 400, the transition strength B(E2; 2+

2 → 0+
2 ) should be

exactly 63760. The B(E2) in Table 1 deviates from the analytic
value of 63760 by a relative error of about 3× 10−8 at ε = 10−6,
and begins to diverge as ε is decreased further. It is extremely
important to break the degeneracies in the SU(3) limit, if the
observables of interest involve the eigenvectors of degenerate
states. Setting ε = 10−6 should break the degeneracy in as safe
a way as possible.

Table 1: Evolution of the transition strength B(E2; 2+
2 → 0+

2 ) as ε from Eq. 41
is decreased to 0.

ε B(E2; 2+
2 → 0+

2 )
10−2 63758.07223259
10−4 63760.00207527
10−6 63760.00211314
10−8 63759.99585572
10−10 63760.46962882
10−12 34391.69107325
10−14 20104.10125927

In contrast to the degeneracies of the SU(3) limit, the degen-
eracies that span the O(5) symmetry from U(5) to O(6) do not
always create the same problems, as the eigenvectors frequently
do not have components in common. However, care should
also be taken with these degenerate states, as they can numeri-
cally create problems along the O(5) symmetry when calculat-
ing transition strengths between them. Although the degenerate
states along the O(5) symmetry do not consistently mix, it can
be safer to slightly break the degeneracy by adding in a small,
but non-zero χ.

7. Conclusions

The software ibar has been developed and extensively tested
for up to 400 bosons, and has been used successfully in a num-
ber of investigations into the behavior of quantum phase tran-
sitions in nuclei. The number of particles available in ibar
is many times greater than what was previously available, and
the generation of precise coefficients created numerous numer-
ical challenges. Reduced matrix elements of the d† operator, as
well as 6-j symbols were calculated to high-precision using an
arbitrary precision library. These coefficients are used to con-
struct the Hamiltonian in ibar, and precise values for energies,
wavefunctions, and transition strengths are found by diagonal-
izing the Hamiltonian. The software ibar and the coefficients
it uses can be found at http://www.nscodes.com.
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